Mutagenesis of thrombin selectively modulates inhibition by serpins heparin cofactor II and antithrombin III. Interaction with the anion-binding exosite determines heparin cofactor II specificity.

نویسندگان

  • J P Sheehan
  • Q Wu
  • D M Tollefsen
  • J E Sadler
چکیده

Thrombin is a multifunctional serine protease that plays a critical role in hemostasis. Thrombin is inhibited by the serpins antithrombin III and heparin cofactor II in a reaction that is dramatically accelerated by glycosaminoglycans. The structural basis of the interaction with these inhibitors was investigated by introducing single amino acid substitutions into the anion-binding exosite (R68E, R70E) and unique insertion loops (K52E, K154A) of thrombin. The rate of inhibition of these recombinant thrombins by antithrombin III and heparin cofactor II was determined in the absence and presence of glycosaminoglycan. The second order rate constant (k2) for inhibition by antithrombin III without heparin was 3.7 x 10(5) M-1 min-1 for wild-type thrombin; rates for the mutant thrombins varied less than 2-fold. For inhibition by antithrombin III with heparin, the rate constant was 4.5 x 10(8) M-1 min-1 for wild-type thrombin with no significant differences between any of the recombinant thrombins. In contrast, the rate constant for inhibition by heparin cofactor II without glycosaminoglycan was 4.3 x 10(4) M-1 min-1 for wild-type thrombin; rates were 10-fold slower for thrombin K52E and 2- to 3-fold slower for thrombins R68E and R70E. The rate constants for inhibition of wild-type thrombin by HCII in the presence of heparin or dermatan sulfate were 9.2 x 10(8) M-1 min-1 and 9.0 x 10(8) M-1 min-1, respectively. Compared to wild-type thrombin, the rate of inhibition by HCII with glycosaminoglycan was 5- to 15-fold slower for thrombins K52E and R70E and 50- to over 100-fold slower for thrombin R68E. Thrombin K154A was inhibited by heparin cofactor II with rates similar to wild-type thrombin in all assays. These results suggest that heparin cofactor II interacts with residue Lys-52 in the proposed S1' subsite and with residues Arg-68 and Arg-70 in the anion-binding exosite of thrombin, and that these interactions contribute to the molecular basis of heparin cofactor II specificity for thrombin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans.

Besides its critical role in hemostasis, the serine protease thrombin also participates in wound healing, inflammation, and atherosclerosis. Thrombin is inhibited by the serpins antithrombin and heparin cofactor II (HCiI) in reactions that are accelerated markedly by specific glycosaminoglycans. Following vascular injury, thrombin must be inhibited at both intravascular and extravascular sites ...

متن کامل

Inhibition of dysthrombins Quick I and II by heparin cofactor II and antithrombin.

Heparin cofactor II and antithrombin are plasma serine proteinase inhibitors whose ability to inhibit alpha-thrombin is accelerated by glycosaminoglycans. Dysfunctional thrombin mutants Quick I (Arg67-->Cys) and Quick II (Gly226-->Val) were used to further compare heparin cofactor II and antithrombin interactions. Quick I, Quick II, and alpha-thrombin were eluted at the same salt concentration ...

متن کامل

Sucrose octasulfate selectively accelerates thrombin inactivation by heparin cofactor II.

Inactivation of thrombin (T) by the serpins heparin cofactor II (HCII) and antithrombin (AT) is accelerated by a heparin template between the serpin and thrombin exosite II. Unlike AT, HCII also uses an allosteric interaction of its NH(2)-terminal segment with exosite I. Sucrose octasulfate (SOS) accelerated thrombin inactivation by HCII but not AT by 2000-fold. SOS bound to two sites on thromb...

متن کامل

Exosites 1 and 2 are essential for protection of fibrin-bound thrombin from heparin-catalyzed inhibition by antithrombin and heparin cofactor II.

Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during...

متن کامل

Molecular mapping of the heparin-binding exosite of thrombin.

Thrombin contains electropositive patches at opposite poles of the molecule which represent potential exosites for the binding of macromolecular ligands. The function of anion-binding exosite I, the fibrin(ogen) recognition site, has been well described. Anion-binding exosite II, located near the carboxyl terminus of the molecule, has been proposed to bind heparin on the basis of chemical modif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 5  شماره 

صفحات  -

تاریخ انتشار 1993